Trophic cascades result in large-scale coralline algae loss through differential grazer effects.

نویسندگان

  • Jennifer K O'Leary
  • Timothy R McClanahan
چکیده

Removal of predators can have strong indirect effects on primary producers through trophic cascades. Crustose coralline algae (CCA) are major primary producers worldwide that may be influenced by predator removal through changes in grazer composition and biomass. CCA have been most widely studied in Caribbean and temperate reefs, where cover increases with increasing grazer biomass due to removal of competitive fleshy algae. However, each of these systems has one dominant grazer type, herbivorous fishes or sea urchins, which may not be functionally equivalent. Where fishes and sea urchins co-occur, fishing can result in a phase shift in the grazing community with subsequent effects on CCA and other substrata. Kenyan reefs have herbivorous fishes and sea urchins, providing an opportunity to determine the relative impacts of each grazer type and evaluate potential human-induced trophic cascades. We hypothesized that fish benefit CCA, abundant sea urchins erode CCA, and that fishing indirectly reduces CCA cover by removing sea urchin predators. We used closures and fished reefs as a large-scale, long-term natural experiment to assess how fishing and resultant changes in communities affect CCA abundance. We used a short-term caging experiment to directly test the effects of grazing on CCA. CCA cover declined with increasing fish and sea urchin abundance, but the negative impact of sea urchin grazing was much stronger than that of fishes. Abundant sea urchins reduced the CCA growth rate to almost zero and prevented CCA accumulation. A warming event (El Niño Southern Oscillation, ENSO) occurred during the 18-year study and had a strong but short-term positive effect on CCA cover. However, the effect of the ENSO on CCA was lower in magnitude than the effect of sea urchin grazing. We compare our results with worldwide literature on bioerosion by fishes and sea urchins. Grazer influence depends on whether benefits of fleshy algae removal outweigh costs of grazer-induced bioerosion. However, the cost-benefit ratio for CCA appears to change with grazer type, grazer abundance, and environment. In Kenya, predator removal leads to a trophic cascade that is expected to reduce net calcification of reefs and therefore reduce reef stability, growth, and resilience.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trophic cascades in seagrass meadows depend on mesograzer variation in feeding rates, predation susceptibility, and abundance

Seagrasses provide important habitat for fishes and invertebrates but are declining around the globe, often due to overgrowth by algae. One hypothesis for this overgrowth is that overfishing of top consumers has led to greater numbers of small predatory fishes that reduce the abundance of mesograzers. This trophic cascade hypothesis requires that the same species that control algal biomass are ...

متن کامل

Consistent multi-level trophic effects of marine reserve protection across northern New Zealand

Through systematic Reef Life Survey censuses of rocky reef fishes, invertebrates and macroalgae at eight marine reserves across northern New Zealand and the Kermadec Islands, we investigated whether a system of no-take marine reserves generates consistent biodiversity outcomes. Ecological responses of reef assemblages to protection from fishing, including potential trophic cascades, were assess...

متن کامل

Introduced rats indirectly change marine rocky intertidal communities from algae- to invertebrate-dominated.

It is widely recognized that trophic interactions structure ecological communities, but their effects are usually only demonstrated on a small scale. As a result, landscape-level documentations of trophic cascades that alter entire communities are scarce. Islands invaded by animals provide natural experiment opportunities both to measure general trophic effects across large spatial scales and t...

متن کامل

A trophic cascade regulates salt marsh primary production.

Nutrient supply is widely thought to regulate primary production of many ecosystems including salt marshes. However, experimental manipulation of the dominant marsh grazer (the periwinkle, Littoraria irrorata) and its consumers (e.g., blue crabs, Callinectes sapidus, terrapins, Malaclemys terrapin) demonstrates plant biomass and production are largely controlled by grazers and their predators. ...

متن کامل

Trophic cascades in a formerly cod-dominated ecosystem.

Removal of top predators from ecosystems can result in cascading effects through the trophic levels below, completely restructuring the food web. Cascades have been observed in small-scale or simple food webs, but not in large, complex, open-ocean ecosystems. Using data spanning many decades from a once cod-dominated northwest Atlantic ecosystem, we demonstrate a trophic cascade in a large mari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ecology

دوره 91 12  شماره 

صفحات  -

تاریخ انتشار 2010